On elastic fields of perfectly bonded and sliding circular inhomogeneities in an infinite matrix
نویسنده
چکیده
The solutions to classical problems of perfectly bonded and sliding circular inhomogeneities in a remotely loaded infinite matrix are constructed by using an appealing choice of dimensionless material parameters that represent the in-plane average normal stress and the maximum shear stress at the center of the inhomogeneity, scaled by the corresponding measures of remote stress. The ovalization of the inhomogeneity and the effects of material parameters on stress concentration are discussed. The range of material parameters is specified for which the inhomogeneity with a perfectly bonded interface can expand in vertical direction under horizontal remote loading. For some combination of material properties, the maximum compressive hoop stress in the matrix along the interface can be larger than the maximum hoop stress around a circular void under tensile remote loading. The strain energies stored in perfectly bonded and sliding inhomogeneities are evaluated and discussed.
منابع مشابه
Energies of circular inclusions: sliding versus bonded interfaces
The elastic strain energies of circular inclusions with a sliding and bonded interfaces are compared. It is shown that the energy in the inclusion with sliding interface due to uniform eigenstrain is greater than the energy in the inclusion with a bonded interface if the Poisson ratio of the material is less than 6 , and smaller if it is greater than 6 . The total energy in the inclusion and th...
متن کاملAn Axisymmetric Torsion Problem of an Elastic Layer on a Rigid Circular Base
A solution is presented to a doubly mixed boundary value problem of the torsion of an elastic layer, partially resting on a rigid circular base by a circular rigid punch attached to its surface. This problem is reduced to a system of dual integral equations using the Boussinesq stress functions and the Hankel integral transforms. With the help of the Gegenbauer expansion formula of the Bessel f...
متن کاملEFFECT OF BOUNDARY CONDITIONS ON LOCALIZED INSTABILITY OF THE SEMI-INFINITE ORTHOTROPIC PLATE
This paper is concerned with an investigation into the localized instability of a thin elastic orthotropic semi-infinite plate. In this study, a semi-infinite plate, simply supported on two edges and under different boundary conditions of clamped, hinged, sliding contact and free on the other edge, is studied. A mathematical model is used and a general solution is presented. The conditions unde...
متن کاملAxisymmetric Buckling of a Spherical Shell Embedded in an Elastic Medium under Uniaxial Stress at Infinity
The problem of a thin spherical linearly-elastic shell, perfectly bonded to an infinite linearly-elastic medium is considered. A constant axisymmetric stress field is applied at infinity in the matrix, and the displacement and stress fields in the shell and matrix are evaluated by means of harmonic potential functions. In order to examine the stability of this solution, the buckling problem of ...
متن کاملAn Axisymmetric Contact Problem of a Thermoelastic Layer on a Rigid Circular Base
We study the thermoelastic deformation of an elastic layer. The upper surface of the medium is subjected to a uniform thermal field along a circular area while the layer is resting on a rigid smooth circular base. The doubly mixed boundary value problem is reduced to a pair of systems of dual integral equations. The both system of the heat conduction and the mechanical problems are calculated b...
متن کامل